A nutrient mass balance of Fernan Lake, ID, and future directions

Frank M. Wilhelm and Trea LaCroix

Department of Fish and Wildlife Sciences, University of Idaho, Moscow ID <u>fwilhelm@uidaho.edu</u> 208-885-7218

CDA tributaries WAG meeting, Nov 30, 2015, CDA, ID

Acknowledgements

- Coeur d' Alene wastewater treatment plant
- IDEQ
- FLCRA
- Bill Miller
- Marie Pengilly
- Mike Webb
- Susan Andrews

Funding provided by Idaho EPSCoR # IIA-1301792

Outline

- Background
- Fernan Lake intro
- Mass balance
- Internal loading
- Future directions

Lake Classification

Trophic state

Oligo- Meso-

Eutrophic

Eutrophication

- Eutrophication: presence of excess nutrients that stimulate aquatic plant growth (Schindler et al. 2008)
- Human activities
 accelerate this
 process
 ag, forestry, roads

What causes blooms?

Carbon: Nitrogen: Phosphorus

N:P 7.2:1 (by mass)

N:P = 7 = balanced

TN:TP ratio (by mass)

- Theoretically
 N:P > 7 = P-limited OK
 N:P < 7 = N-limited problems
- In reality Cyanobacteria blooms toxins when N:P 75:1

Toxins

- Dermatoxins
 - Skin, rashes
- Hepatotoxins
 - Liver toxins
- Neurotoxins
 - Central nervous system

Fernan Lake

Fernan Lake

- 154 ha
- 5.1 m mean depth
- 8.2 m max depth

Bloom history

<u>Action</u>
Bloom noted
Bloom noted
Bloom noted
10 day advisory
24 day advisory
14 day advisory
90+ day advisory
ongoing

Lake closures

University of Idaho

September 9, 2014

WARNING: Health Advisory issued for Fernan Lake

KOOTENAI COUNTY, ID -- A health advisory was issued today for Fernan Lake by the Panhandle Health District and the Idaho Department of Environmental Quality. Water samples confirmed the presence of the blue-green algae species of *Microsystis, Anabaena,* and *Aphanizomenon* - all species can produce potentially dangerous toxins. Precaution is advised.

These algae species may produce potentially dangerous toxins. *Children and pets are particularly susceptible.* In animals, a toxin that may be produced by *Anabaena* and *Aphanizomenon* can cause a rapid progression of neurological symptoms such as muscle spasm, decreased movement, labored breathing, convulsions and death. Symptoms have not been documented in people. However, the public is advised to avoid any activity that could lead to ingesting the lake water considering the effect these algal species have on animals.

Objectives

- Establish detailed mass balance of phosphorus and total residue
- Sample in- and outflows for 1 year

Inflows and outflow

Culvert locations

Determine culvert load

Determine wetland load

Explore influence of the dam

13-May-14 Dam in01-Dec-14 Dam out03-Mar-15 Dam in

ISCO automated samplers

Sample analyses

- Total residue (mg/L) was measured using standard method 2450-B (Eaton et al. 2005)
- Total phosphorus (µg/L) was measured using method 4500-P

(Eaton et al. 2005)

Discharge

- measured by traditional cross-section and velocity
- Concentration × discharge= load

Discharge

Made rating curves from biweekly visits

recorded stage @ 15 min intervals

Lake surface area and volume

Used bathymetry data
Water level at the dam

Annual water budget

Total Phosphorus Flux

Total Phosphorus Storage

Input - Output = ΔStorage

Inputs = 1.4 tonnes - Output = 0.3 tonnes

Δstorage = 1.1 tonnes (81%)

Annual P budget

Total Residue (sediment)

Input - Output = ΔStorage

Inputs = 2298 tonnes - Output = 760 tonnes

Δstorage = 1538 tonnes (67%)

Problem is in the summer months

Calculate summer internal load

in-out- Δin lake P= L_{internal}

(Welch and Jacoby 2001)

*This assumes that all external P is readily available

Summer internal load

In - out - Ain lake P = L_{internal} 93 - 0.14 - 88 + 20= 25 kg (21%) 93 - 0.14 - (88-15)+20 = 40 kg (30%)93 - 0.14 - (88 - 15 - 38) + 20 = 78 kg (46%)

Internal loading

2014 183 mg-m⁻²-yr⁻¹

2015 50 mg-m⁻²-yr⁻¹

What is the source?

Internal loading via anoxia / redox reactions

What is the source?

Fernan is well mixed throughout the year

Wind induced mixing

Biotic community recycling

Literature data

- 11 publications
- rates ranged from
 0.01 to 37 mg·m⁻²·day⁻¹

- 11 publications
- rates ranged from
 0.02 to 5.46 mg·m⁻²·day⁻¹

∕0.8 to 3.3 mg⋅m⁻²⋅day⁻¹

Summary

- Majority of P and sediment come in during spring runoff
 - However this is not the problem time period
- Internal loading contributes 21-46% of the available P in summer
 - Investigate internal loading further

Summary

- Inter-annual variability in runoff and loading
- Wind mixing or biotic community
- In-lake strategies in concert with whole-watershed remediation

Future directions

- Wetland function
- Dry deposition
- Internal loading
- Restoration/remediation

Remediation options

Whole-watershed/external

- Headwater to lake (sed. delivery)
- Examine Fernan Creek

In-lake/internal

- Dredging
- Alum addition
- Nitrogen addition

In-lake remediation

- Treat symptoms, not the source
- Expensive commitment

Fernan Creek changes

1954

1974

Today

University of Idaho

Historic Fernan Creek Photos from USGS

Alum addition

- Precipitates P from the water column
- If alum is buried by sediment, it becomes ineffective

• Whole lake application for Fernan Lake would cost between \$22,500 - \$560,000

Dredging

- Remove P-rich seds
- Need someplace for removed sediment

Geotubes to dewater sediment

Nutrient rebalance

- Add N to re-balance TN:TP ratio
- Allows beneficial algae to flourish

• Reduces cyanobacteria abundance and toxins

