Expansion and Update of the <u>SAJB Groundwater Flow Model</u> Spokane Valley – Rathdrum Prairie Aquifer

Prepared by

John Porcello, LHG - GSI Water Solutions Walt Burt, LHG - GSI Water Solutions

September 27, 2012

Groundwater Model Improvement Project

- Funded by SAJB and the WA Department of Health
- Project focused on model expansion and update, and the 2010 Special Wellhead Protection Areas (SWPAs)
- Three project tasks
 - Study effects of stormwater recharge facilities on 2010 SWPAs
 - Verify the method for delineating SWPAs
 - Model expansion and update
 - Expansion: Create a high-resolution aquifer-wide model
 - Update: Pumping and information from the Bi-State study

SAJB and Bi-State Model Areas

SAJB Model - Groundwater Elevations

Groundwater Model Improvement Project

Objectives for the Expansion and Updated Model

- Support wellhead protection planning
 (a) Avoid truncation of capture zones at state line
- 2. Provide a high-resolution, up-to-date tool for (a) Wellfield-scale analyses
 - (b) Groundwater resource management at other scales

SAJB and Bi-State Model Grids at CID-2

SAJB and Bi-State Model Grids at CID-4

SAJB and Bi-State Model Grids at Recharge Basin

SAJB and Bi-State Model Grids at Chester Creek

SAJB and Bi-State Model Grids in Hillyard Trough

Drawdown Cones at Parkwater and Well Electric

Flow Patterns at Parkwater and Well Electric MicroFEM 4.10 - MFEM_SVRP_08-10-2012_Final - 0 X Files Project View Commands Calculate Options Tools Import Export Help Param Thick Top Xtra [ft] 0.000 0 head Legend 🛛 [d] 0 vert. res. 1884 Well Electric [ftº/d] 400000 trans. [ft] **1876.38** head discharge [ftº/d] 0 - 1883 [d] 0.5 vert, res. [ftº/d] 24256 trans. - 1882 [ft] 1876.75 head discharge [ft³/d] 0 1881 vert, res. [d] 0 trans. [ffe/d] 0 [ft] 1879.32 head - 1880 discharge [ft³/d] 0 - 1879 - 1878 - 1877 - 1876 1875 1074 Parkwater KzonesInIdaho MFEM-WA-4000 Fixed Nodes Wells Fixed Nodes River Bedrock Hydrography 36538 1:10000 36238 x = 2502863.38 y = 267477.75 😫 🔳 🔳 🔳 📰 🕅 E 📉 🔛 🚍 # @ \$\$ € € 5 A C 13 X P W Γ.

Three-Dimensional Groundwater Flow Paths (Projected onto Plan View)

Capture In Cross-Sectional View

- 1. Grid includes some adjoining areas with alluvial deposits that might be of interest in the future
 - Mouth of Hangman Creek
 - Spirit and Hoodoo valleys in Idaho

2. Uses three layers to simulate groundwater flow

 The USGS Bi-State model used just one layer, except in Hillyard Trough (3 layers north of Spokane city limits)

- Pain-staking effort to resolve issues with Bi-State model files

- Electronic files: Too thick just east of state line, and too thin between state line and City of Spokane
- Published maps: Found internal inconsistencies (saturated thickness did not match water table and basement)
- Localized change to USGS representation of basement bedrock and SVRP thickness near downtown Spokane (per City and Ecology)

3. Inflows from tributary drainages and lakes

- 37 areas in Washington and 38 areas in Idaho
- Same representation as in USGS Bi-State model
- 4. Multiple stage profiles for the Spokane River
 - Summer conditions (low-stage / low-flow)
 - Spring conditions (high-stage / high-flow)
 - Annual average conditions

- 5. Updated well list and pumping rates
 - Annual average rates, as compiled by City of Spokane
- 6. Areal recharge from Bi-State model
- 7. Pumping and areal recharge are now separated!
 - Lumped together into single term in Bi-State model
 - Bi-State model pumping =
 - (1) Actual pumping minus
 - (2) Septic system infiltration minus
 - (3) 40% of outdoor-applied water in urban areas minus
 - (4) 40% of outdoor-applied water on irrigated fields
 - Difficult to change pumping in Bi-State model: requires decisions about whether (and how) to change recharge
 - Difficult and time-consuming to separate, but we did it!

19

- 8. All input data are stored in the model software!
 - Facilitates visual display
 - Allows mathematical analysis of input data, facilitates QC
 - Includes labels of key features
 - Facilitates future adjustments to the model grid (i.e., the data values at existing nodes won't get lost)

Param Thick Top		Xtra		Param T	
x6	Final BaseElev (ft	1326.868	-	x32	Stag
х7	L1 Aq Thickness	100		×33	Stag
×8	L2 Aq Thickness	100		x34	Stag
x9	L3 Aq Thickness	372.23		x35	Stag
×10	Precipitation rech	0.002325		×36	Sep
×11	Sewer density	0.25		x37	Irrig
x12	Irrigation density	0		x38	City
x13	K1 (ft/day)	4500		x39	City
×14	K2 (ft/day)	4500		×40	LLS
x15	K3 (ft/day)	4500		×41	City
x16	c2 (days)	0.5		×42	SPK
x17	c3 (days)	0.5		x43	PPI
x18	mt1 (ft)	100		×44	NSI
x19	mt2 (ft)	100		×45	w.
x20	mt3 (ft)	372.23		×46	WD
x21	RiverReachNo.W	0		×47	WD
x22	Leakage(Kr/Dr)(si	0		×48	City
x23	River Width (w)	0		×49	Ros
x24	River Node Lengt	0		×50	City
x25	River Node Area (0		x51	City
x26	a/(LW)	0		x52	City
x27	Resistance(Dr/Kr	0		×53	City
x28	wc1 (days)	0		×54	City
x29	RiverReachNo.ID	0		x55	Sep
x30	USGS KVSR (ft/c	0		×56	Irrig
x31	Stage Fall94 (ft Ci	0		×57	Tota
v35	Stage Spring95 (fl	n	Ψ.	5.50	ГЕНЕ
KzonesInIdaho MFEM-WA-4500				KzonesIn	
Fixed Nodes Wells HID-2				Fixed Noc	
Fixed Nodes River (Fixed Noc	
Bedrock				Bedrock	
Hydrography				Hydrograp	
(4 👸 📉	≫ ∣	(€

Other Work and Findings

- Review of SWPA delineation methodology
 - Can we replicate the 2010 Special Wellhead Protection Areas?
- Regional stormwater recharge facilities
 - Study effects of large-scale recharge on 2010 SWPAs

Other Work and Findings

- Review of SWPA delineation methodology
 - Can we replicate the 2010 Special Wellhead Protection Areas?
- Regional stormwater recharge facilities
 - Study effects of large-scale recharge on 2010 SWPAs

Wells Selected, And Rationale

- CID #4
 - Crosses underneath losing reach of Spokane River
- Fairchild #5
 - City found SWPA was sensitive to how river is modeled
- Pinecroft
 - In complex area (near bedrock knoll), and crosses river
- City of Spokane's Parkwater and Well Electric wells
 - Huge pumpers, near river

Parkwater and Well Electric (City and GSI Delineations)

Other Work and Findings

- Review of SWPA delineation methodology
 - Can we replicate the 2010 Special Wellhead Protection Areas?
- Regional stormwater recharge facilities
 - Study effects of large-scale recharge on 2010 SWPAs

Bi-State Tributary Recharge Effects on Wells Near Chester Cr. And Saltese Recharge Basins

